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ABSTRACT

ISSUES IN GROUP SEQUENTIAL/ADAPTIVE DESIGNS

Hong Wan

Susan Ellenberg

In recent years, there has been great interest in the use of adaptive features in

clinical trials (i.e., changes in design or analyses guided by examination of the ac-

cumulated data at an interim point in the trial) that may make the studies more

efficient (e.g., shorter duration, fewer patients). Many statistical methods have been

developed to maintain the validity of study results when adaptive designs are used

(e.g., control of the Type I error rate). Group sequential designs, which allow early

stopping for efficacy in light of compelling evidence of benefit or early stopping for

futility when the likelihood of success is low at interim analyses, have been widely

used for many years. In this dissertation, we study several aspects of statistical is-

sues in group sequential/adaptive designs. Sample size re-estimation has drawn a

great deal of interest due to its permitting revision of the target treatment difference

based on the unblinded interim analysis results from an ongoing trial. A possible

risk of ublinded sample size re-estimation is that the exact treatment effect being

observed at interim analysis might be back-calculated from the modified sample size,

which might jeopardize the integrity of the trial. In the first project, we propose a

pre-specified stepwise two-stage sample size adaptation to lessen the information on

treatment effect that would be revealed. We minimize expected sample size among
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a class of these designs and compare efficiency with the fully optimized two-stage

design, optimal two-stage group sequential design and designs based on promising

conditional power. In the second project, we define the complete ordering of a group

sequential sample space and show that a Wang-Tsiatis boundary family or an ex-

ponential spending function family can completely order the sample space. We also

propose a simple method to transform a spending function to a completely ordered

sample space when using the sequential p-value ordering. This method is also ex-

tended to β-spending functions for p-values to reject the alternative hypothesis. In

the third project, we propose a simple approach for controlling the familywise error

rate in a group sequential design with multiple testing. We apply sequential p-values

at the interim analysis from a group sequential design to the sequentially rejective

graphical procedure which is based on the closure principle. We also use simulations

to study the operating characteristics of multiple testing in group sequential designs.

We show that in terms of expected sample size, using a group sequential design in

multiple hypothesis testing is more efficient than fixed sample size designs in many

scenarios.
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Chapter 1

Introduction

Clinical trials often take long time and a lot of resources to conduct. Interim anal-

yses are often performed in clinical trials because of ethical and economical reasons.

There is an ethical need to ensure that patients are not exposed to unsafe, inferior

or ineffective treatments. Early stopping may also allow highly effective medicines to

come to market faster for patients who do not have good treatment options. Early

completion can also free up resources for studies addressing other pressing medical

issues.

In recent years, the potential use of adaptive designs in clinical trials have attracted

great interest because of the potential gain of efficiency in drug development processes

(e.g., shorter duration, fewer patients). The Pharmaceutical Research and Manufac-

turers of America (PhRMA) has formed an adaptive design working group to promote

the usage of adaptive designs and related methodology (Gallo et al. (2006)). The Eu-

ropean Medicines Agency (EMA) published a “Reflection paper on methodological

1
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issues in confirmatory clinical trials planned with an adaptive design” (EMA (2007)).

The Food and Drug Administration (FDA) recently released the draft guidance on

adaptive design clinical trials and discussed various aspects of usage, considerations,

challenges of application of adaptive design trials (Food and Drug Administration

(2010)). The FDA draft guidance defines an adaptive design clinical study as “a

study that includes a prospectively planned opportunity for modification of one or

more specified aspects of the study design and hypotheses based on analysis of data

(usually interim data) from subjects in the study.” Various aspects of clinical trials

could be modified at interim analysis; these include, but are not limited to, study dose,

treatment duration, study endpoints, randomization, study design, study hypotheses,

sample size, etc.

Sample size re-estimation based on unblinded interim effect size estimates has

drawn a great deal of interest due to its permitting revision of the hypothesized treat-

ment difference from an ongoing trial while preserving the Type I error rate. When

there is uncertainty about the assumptions of treatment effect at the design stage, it

would be valuable to check these assumptions and make a midcourse adjustment to

maintain the study power. Several adaptive design methods have been proposed to

re-estimate sample size using the observed treatment effect after an initial stage of a

clinical trial while preserving the overall Type I error at the time of the final analy-

sis (Proschan and Hunsberger (1995); Cui et al. (1999); Müller and Schäffer (2001)).

One unfortunate property of the algorithms used in some methods is that they can be

2
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inverted to reveal the exact treatment effect at the interim analysis (Ellenberg et al.

(2006)). In Chapter 2, we propose using a step function with an inverted U-shape of

observed treatment difference for sample size re-estimation to lessen the information

on treatment effect revealed. This will be referred to as stepwise two-stage sample

size adaptation. This method applies calculation methods used for group sequential

designs. We minimize expected sample size among a class of these designs and com-

pare efficiency with the fully optimized two-stage design, optimal two-stage group

sequential design and designs based on promising conditional power. The tradeoff

between efficiency versus the improved blinding of the interim treatment effect is also

discussed.

Armitage, McPherson, and Rowe (1969) had numerically shown that repeated

testing at a fixed level at interim analyses inflates the overall Type I error rate. Group

sequential designs (Pocock (1977); O’Brien and Fleming (1979); Lan and DeMets

(1983); Jennison and Turnbull (2000); etc.) have been developed and are well accepted

to control the Type I error rate with possible early stopping to either accept or reject

the null hypothesis. P-values are often used to measure the strength of evidence

against the null hypothesis in favor of the alternative. An ordered outcome space

is required to compute a p-value. Unlike a fixed sample design, a group sequential

trial might stop early and the densities for the group sequential statistics used to

stop the trial lack a monotone likelihood ratio. There are several ways to order the

sample space for a group sequential design, e.g., stage-wise ordering by Tsiatis, Rosner

3
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and Mehta (1984); maximum likelihood estimate (MLE) ordering by Emerson and

Fleming (1990); likelihood ratio ordering or z-score ordering by Chang (1989); score

test ordering or B-value ordering by Rosner and Tsiatis (1988); and sequential p-value

ordering by Liu and Anderson (2008a). In Chapter 3, we review the existing sample

space orderings for group sequential designs and we show the advantage of sequential

p-value ordering because this method uses the totality of the accumulating data,

taking into account the entire sample path, while the other orderings only consider

the data where the boundary was crossed or the data at the current analysis. We

show that some spending functions could not completely order the sample space

when sequential p-value ordering is used to test the null hypothesis (Type I error).

We propose a simple method to transform such a spending function to one which

can completely order a group sequential design sample space. We also extend the

sequential p-value ordering to test the alternative hypothesis (Type II error). The

two one-sided sequential p-values against the null or alternative hypothesis may be

useful for a Data Monitoring Committee (DMC) making an appropriate decision.

Much of the work on group sequential methods was developed under a single end-

point. Clinical trials often involve more than one endpoint. It is of interest to extend

the group sequential methods in the multiple endpoint/testing context. Less litera-

ture is available for this topic. In Chapter 4, we propose to apply sequential p-values

methods to closed test based multiple testing procedures to control the familywise

error rate for a group sequential design with multiple testing. We run simulations to

4
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study power and expected sample size of a group sequential design with two primary

and two secondary endpoints. We study the operating characteristics of this design

under many different scenarios of design parameters and using different spending

functions for secondary endpoints.

5
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Chapter 2

Stepwise two-stage sample size

adaptation

2.1 Introduction

Different adaptive design methods have been proposed to modify sample size based

on unblinded results from interim analysis while preserving the Type I error rate.

Proschan and Hunsberger (1995) proposed a two-stage adaptive design to re-estimate

second-stage sample size based on conditional power assuming the observed interim

treatment effect. Liu and Chi (2001) varied this approach based on conditional power

computed under the minimum treatment effect of interest. Anderson and Liu (2004)

showed that the latter approach improves efficiency compared to the former approach.

Cui et al. (1999) preserved the overall Type I error by combining the Wald statistics

with pre-specified weights, obtained before and after sample size adaptation. Müller

6
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and Schäffer (2001) showed the overall Type I error can be preserved unconditionally

under any general adaptive change given that the conditional Type I error is preserved.

Posch et al. (2003) investigated an ‘optimal’ reassessment rule which minimizes the

expected sample size over some set of fixed alternatives with an overall desired power

at the minimum treatment effect of interest. They described the optimal second-stage

sample size as a polynomial function of the first-stage test statistic given the stopping

boundaries and preplanned weights of the group sequential designs. Lokhnygina and

Tsiatis (2008) proposed a fully optimized, decision-theoretic two-stage adaptive group

sequential design to achieve the minimum expected sample size averaged over a normal

prior or some fixed alternatives for the treatment effect. This optimal two-stage design

is adaptive in that the sample size at the second stage depends on the data from the

first stage. They used backward induction algorithm to solve for a Bayesian sequential

decision problem following Schmitz (1993), and Barber and Jennison (2002).

The re-estimated sample size in the second stage from these adaptive designs is a

continuous function of the observed test statistic (treatment effect) at the first interim

analysis. Given the study design and the second-stage sample size, the treatment

effect at the interim analysis might be back-calculated. This is generally considered

a poor feature of these designs (Ellenberg et al. (2006)). One way to reduce the

information revealed about the treatment effect in the interim analysis is to make the

second-stage sample size a step function of interim treatment effect, i.e., to provide

a few sample size choices given the interim test results.

7
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In this paper, we outline a pre-specified two-stage design with a limited set of

stage two sample size possibilities and minimizing the expected sample size under

the assumption of a normal prior for the treatment effect. We compare this design

with the fully optimized two-stage adaptive design (Lokhnygina and Tsiatis (2008)),

optimal two-stage group sequential designs (Anderson (2007)) and designs based on

promising conditional power (Gao et al. (2008), Mehta and Pocock (2011)). We

conclude with a discussion in the final section.

2.2 A two-stage design with a limited set of stage

two sample size possibilities

Assume X1, X2, . . . are independent and identically distributed with a Normal

(θ,1) distribution. Let θ represent the single parameter of interest, which is the

treatment effect in our case. Assume n1 is the first-stage sample size and there are

m−1 possible stage two sample sizes at the first interim analysis. For i = 1, 2, . . . ,m,

ni is a sequence of positive integers and denote

Zi =

ni∑
j=1

Xi/
√
ni.

We will assume n1 < ni, i = 2, 3, . . . ,m, but that otherwise these numbers are not

ordered in any particular way. The amount of statistical information about θ after

ni observations and will be denoted by Ii, i = 1, 2, . . . ,m. Under these assumptions

the statistics Zi, i = 1, 2, 3, . . . ,m, have a multivariate normal distribution where if

8



www.manaraa.com

1 ≤ nj ≤ ni we have

E{Zi} = θ
√
Ii, (2.2.1)

Cov(Zj, Zi) =
√
Ij/Ii (2.2.2)

Jennison and Turnbull (2000) refer to this as the ‘canonical form’ when used with

group sequential designs where n1 < n2 < . . . < nm. It is the asymptotic form for

a broad variety of group sequential designs with endpoints having different distribu-

tions.

We consider two-stage designs both since the two-stage design should be simple

to implement and because it minimizes what is revealed about the interim treatment

effect. For some initial sample size n1 we compute a test statistic Z1 and for some

integer m > 1 we consider boundary values a1 < a2 < . . . < am. The trial is stopped

after the analysis of n1 patients for a positive efficacy finding if Z1 ≥ am, while if

Z1 < a1 the trial is stopped for futility. For i = 2, 3, . . . ,m, if ai−1 ≤ Z1 < ai the

trial continues to the second stage with a sample size of ni > n1, a test statistic Zi is

computed based on the mean of the entire ni observations, and for some real value bi

efficacy is established if Zi > bi. In this two-stage design setting, b1 = am. Note that

for i = 2, 3, . . . ,m there is no restriction on the ordering of the ni values. If they are

all equal or if m = 2, this becomes a two-stage group sequential design.

The probability of crossing an upper bound at the first interim analysis with n1

observations is

α1(θ) = Pθ{Z1 ≥ am} (2.2.3)

9
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For i = 2, 3, . . . ,m the probability of the first interim test statistic being between ai−1

and ai and then crossing the upper bound after ni observations at the second stage is

αi(θ) = Pθ{{ai−1 ≤ Z1 < ai} ∩ {Zi ≥ bi}}. (2.2.4)

Similarly, the probability of crossing a lower bound at the first interim analysis

with n1 observations is

β1(θ) = Pθ{Z1 < a1} (2.2.5)

For i = 2, 3, . . . ,m the probability of the first interim test statistic being between ai−1

and ai and then failing to cross the upper boundary at the second stage after ni > n1

observations is

βi(θ) = Pθ{{ai−1 ≤ Z1 < ai} ∩ {Zi < bi}}. (2.2.6)

These probabilities can be computed using group sequential design computations

as outlined in Jennison and Turnbull (2000). The total probability of crossing an

upper bound at any time is

α(θ) =
m∑
i=1

αi(θ) (2.2.7)

and the Type I error for the design is α(0). The probability of being below a lower

boundary (a1 for the first interim analysis and bi for stage two analysis after ni patients

for i = 2, 3, . . . ,m) is

β(θ) =
m∑
i=1

βi(θ) (2.2.8)

For any given θ,

α(θ) + β(θ) = 1 (2.2.9)
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2.3 Reparameterizing the design

The design can be parameterized by using the sample sizes and boundaries, e.g.,

ni, ai and bi, for i = 1, 2, . . . ,m. Our goal is to achieve the minimum expected sample

size over a range of alternatives. We will reparameterize the design here, beginning

with boundary crossing probabilities under the null hypothesis and relative sample

sizes at the different stages of the design.

The overall Type I error for the design is

α ≡ α(0) =
m∑
i=1

αi(0) (2.3.1)

The probability of a negative finding under the null hypothesis is

1− α = β(0) =
m∑
i=1

βi(0) (2.3.2)

Leaving ni fixed for i = 1, 2, . . . ,m we can map back and forth from a parame-

terization using a1 and ai, bi, i = 2, 3, . . . ,m, to another using α and αi(0), βi(0),

i = 2, 3, . . . ,m. We briefly discuss the method for doing this. First, consider the

bounds at the first stage. Since β1(0) = P{Z1 < a1} we have a1 = Φ−1(β1(0)) where

Φ−1() represents the inverse of the standard normal cumulative distribution function.

Next, note that for i = 2, . . . ,m

P0{Zi < ai} = Φ(ai) = β1(0) +
i∑

j=2

(αj(0) + βj(0)) (2.3.3)

and thus

ai = Φ−1

(
β1(0) +

i∑
j=2

(αj(0) + βj(0))

)
. (2.3.4)
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For i = 2, 3, . . . ,m the value of bi is a solution to the equation

βi(0) = P0{{ai−1 ≤ Z1 < ai} ∩ {Zi < bi}}. (2.3.5)

where βi, ai and ai−1 are fixed. This is a standard computation for deriving group

sequential designs that is outlined in Jennison and Turnbull (2000). With the repa-

rameterization from ai and bi to αi(0) and βi(0) we now have a method of choosing

designs that control Type I error.

Next we consider sample size parameterization to control power. We let ri =

ni/n1 > 1 represent the relative increase in sample size at the second stage of the

trial based on interim results at stage 1, i = 2, 3, . . . ,m. The initial parameters

defining the distribution were n1, . . . , nm, a1, . . . , am, b2, . . . , bm. Note b1 = am in this

two-stage design setting. Thus, there were a total of 3m − 1 parameters defining

the design. The complete reparameterization now consists of n1, α, ri, αi(0) and

βi(0), i = 2, 3, . . . ,m, which still has 3m − 1 parameters. Any two designs with all

parameters other than n1 equal will have the same Type I error structure. The power

to reject θ = 0 when, in truth, θ = δ > 0, 1− β(δ), is strictly increasing as a function

of n1 in this case. δ represents the minimal treatment difference of interest. A root

finding algorithm can find a minimum value of n1 that provides a desired power level.

Thus, we can replace n1 with β(δ) in the parametrization.

12
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2.4 Unrestricted 2-stage designs

An appropriately selected and unrestricted parameter space can make optimiza-

tion problems particularly tractable. We develop an unrestricted reparameterization

of the design. We assume α and β(δ) are fixed at desired levels. It may be easier to

optimize the unrestricted value n1 rather than β(δ) if power is not restricted. Note

that we are treating n1 as a proportion of the sample size of a fixed design (nfix) with

Type I error α and power 1-β(δ), and thus as a continuous variable rather than as an

integer value here.

We consider a real value xai and let

αi(0) =
α exp(xai)

1 +
∑m

j=2 exp(xaj)
(2.4.1)

i = 2, 3, . . . ,m. Similarly, we consider a real value xbi and let

βi(0) =
(1− α) exp(xbi)

1 +
∑m

j=2 exp(xbj)
(2.4.2)

i = 2, 3, . . . ,m. Note that

α1(0) =
α

1 +
∑m

j=2 exp(xaj)
, (2.4.3)

and

β1(0) =
1− α

1 +
∑m

j=2 exp(xbj)
, (2.4.4)

Finally, we consider a real value xri and let ri = 1 + exp(xri), i = 2, 3, . . . ,m.

Now our parameter space consists of fixed values α and β(δ) and 3m− 3 unrestricted

parameters: xai, xbi, and xri, i = 2, 3, . . . ,m. This space is easily mapped to the error

13
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probability parameter space and then to the appropriate boundary cutoffs. A simple

optimization function such as the R nlminb function can be used to find a design to

minimize the expected sample size given a fixed Type I error, power and δ value.

2.5 Results

2.5.1 Stepwise Adaptive Design Characteristics

The fully optimized two-stage design from Lokhnygina and Tsiatis (2008) suggests

that the sample size for the second stage is an inverted ‘U’ shape curve of the test

statistic from the first stage to achieve the minimum expected sample size over a

range of alternatives. Posch et al. (2003) also suggests a similar shape of the optimal

second-stage polynomial while minimizing expected sample size averaged over some

fixed alternatives, i.e., only upsizing the trial when the treatment effect in the first

interim is an intermediate effect furthest from stage one boundaries.

In light of the inverted ‘U’ shape curve from Lokhnygina and Tsiatis (2008) design,

we present the stepwise adaptive design, which is an optimal design with two choices

of second-stage sample sizes with m = 4. We set the choice of second-stage sample

size to one value when the first-stage test statistic is close to either the futility bound

or efficacy bound at the first interim, i.e., n2 = n4. The other choice of sample size is

chosen when the first-stage test statistic falls into an intermediate region away from

the first-stage stopping boundaries, i.e., an intermediate treatment effect is observed
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that is not particularly close to the null or alternate hypothesis effect size. This feature

can further blind the treatment effect at the first interim analysis. The expected

sample size was integrated over a normal prior distribution for θ with mean and

standard deviation δ/2. The prior mean might be chosen based on the best knowledge

of the treatment effect before the trial started. The prior standard deviation might

be chosen to reflect the range of the interest. The specific choice of δ/2 was arbitrary.

We’ll show the results later about the impact of the choice of the prior mean and

standard deviation on the optimization of the trial design. The second-stage sample

sizes and the cutoffs for selecting among stage two sample sizes were selected through

the optimization algorithm which minimizes the expected sample size. The first-stage

sample size was selected to produce the desired power 1− β(δ).

Figure 2.1 (top) shows the stepwise adaptive design, the fully optimized two-

stage adaptive design (Lokhnygina and Tsiatis (2008)) and optimal two-stage group

sequential designs (Anderson (2007)). We focus on the proposed stepwise adaptive

design first. The top left figure shows total sample size N for the optimal design

expressed as a percentage of the fixed sample size design, Nfix, as a function of the

standardized statistic at first interim analysis, Z1. The top right figure shows the

boundary value at the second stage, Z2, as a function of Z1. For error probabilities

α = 0.05 and β = 0.1, Nfix = (1.64 + 1.28)/δ2 and the boundary for a one stage

study would be Φ−1(0.95) = 1.64. In this two-stage design, the first interim analysis

would be conducted after 0.52Nfix observations. If the standardized test statistic Z1
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is less than 0.48 then the trial will stop for futility. If the standardized test statistic

Z1 exceeds 2.01, the trial will stop for efficacy. If the standardized test statistic Z1

falls into the region [0.69, 1.70], the final total sample size would be 1.20Nfix and the

second-stage boundary would be 1.75. Otherwise, if the standardized test statistic Z1

falls into the other area of the continuation region, the final total sample size would

be 1.07Nfix. and the second-stage boundary is 1.67.

While Figure 2.1 (top) also compares the study designs from this stepwise adaptive

design with the fully optimized two-stage adaptive design (Lokhnygina and Tsiatis

(2008)) and optimal two-stage group sequential designs (Anderson (2007)). The step-

wise adaptive design gives two choices of second-stage sample size: the total sample

size close to the sample size from a fixed design when the first interim test statis-

tic is close to the futility bound or efficacy bound; the total sample size increases

about 20% compared to the sample size from a fixed design when the first interim

test statistic is intermediate. The stepwise adaptive design is simplified compared to

the fully optimized two-stage adaptive design. Comparing to the optimal two-stage

group sequential design, the stepwise adaptive design has the sample size and bound-

ary close to the fixed sample size design when the interim test statistic is close to the

first-stage boundaries. The maximum sample size and corresponding second-stage

boundary from stepwise adaptive design is a bit higher compared to group sequential

design but not much higher. Knowing the sample size adaptation following stage 1

reveals some information about the interim test statistic which, in turn, can be trans-
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Figure 2.1: Total sample size N/Nfix (top left) and the boundary value (top right)
at the second stage for designs optimized for prior θ ∼ N(δ/2, (δ/2)2) with 90%
power and 5% Type I error, one-sided; expected sample size (middle left), power
(middle right), predictive power (bottom left), probability of maximizing N after first
interim analysis (bottom right) over a range of θ for the design optimized for prior
θ ∼ N(δ/2, (δ/2)2).
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Table 2.1: How stage 2 sample size knowledge translates into possible stage 1 results
by design type for optimal designs with prior θ ∼ N(0, (δ/2)2), 90% power and 5%
Type I error, one-sided

Examples of stage two sample size relative to the fixed design Possible values of Z1

Stepwise Adaptive Design
0.68 (0.69, 1.70)
0.55 (0.48, 0.69), (1.70, 2.01)

Fully Optimized Adaptive Design
0.71 1.18
0.49 0.47, 1.94

Optimal Two-Stage Group Sequential Designs
0.65 (0.50, 1.99)

lated into an approximate range for the interim observed treatment effect. Table

2.1 shows the examples of the range of possible Z-values that correspond to different

known stage 2 sample sizes.

Figure 2.1 (middle and bottom) compares the expected sample size, overall power,

and predictive power of this stepwise adaptive design with the fully optimized two-

stage adaptive design and optimal two-stage group sequential designs. The stepwise

adaptive design had nearly identical expected sample size and overall power over a

range of alternatives compared to the fully optimized two-stage adaptive design and

optimal two-stage group sequential designs. Predictive power is defined as a weighted

average of conditional power (conditioning on the first-stage test statistic) with prior

θ ∼ N(δ/2, (δ/2)2). The stepwise adaptive design and fully optimized adaptive design

have higher predictive power when the first-stage test statistic is close to the upper

efficacy bound and lower predictive power when the first-stage test statistic is close
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to the lower futility bound compared to optimal two-stage group sequential design.

We also compare the probability of maximizing sample size for the stepwise adaptive

design and the optimal two-stage group sequential design. The stepwise adaptive

design has a lower probability of requiring the maximum total sample size compared

to the optimal two-stage group sequential design as shown in Figure 2.1 (bottom

right), though the maximum sample size is a bit larger for the stepwise adaptive

design.

The designs shown above are based on a prior distribution of θ ∼ N(δ/2, (δ/2)2),

which is the situation when the investigator has some prior information and is neutral

on treatment effect between the null and alternative hypothesis. Early Phase II

development of experimental drugs might fit this situation. We also explored the

stepwise adaptive design which uses different prior distribution. Figure 2.2 (top)

shows the design with prior θ ∼ N(0, (δ/2)2) and Figure 2.2 (middle) shows the

design with prior θ ∼ N(δ, (δ/2)2). With prior mean =0, the experimenter does

not have much confidence in the treatment effect; the stepwise adaptive design only

increases the sample size when the interim statistics looks promising. With prior

mean =δ, the experimenter has more confidence in the treatment effect, the stepwise

adaptive design only increases the sample size when the interim test statistic does

not look promising. We also investigate the impact of a flatter prior distribution on

the design. Figure 2.2 (bottom) shows the design with prior θ ∼ N(δ/2, (2δ)2) vs.

θ ∼ N(δ/2, (δ/2)2). The stepwise design with a flatter prior has a wider continuation
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region and an earlier first interim analysis which would be conducted after 0.29Nfix

observations. This is inconsistent with common recommendation of conducting the

first interim analysis at around 50% information time. This suggests that the time

to adapt also depends on how much prior information we have. For many trials

with delayed endpoints, the only possible time for adaptation would be at early time

points.

2.5.2 Stepwise Adaptive Design Compares with Designs Based

on Promising Conditional Power

Chen et al. (2004) showed that the conventional test could be performed without

inflating the Type I error if one increased the sample size only when interim results

were promising, which was defined as conditional power of 50 percent or greater. Gao

et al. (2008) and Mehta and Pocock (2011) further extended this idea to a broader

range of promising zones in which the sample size may be increased up to an upper

bound based on conditional power and the conventional tests may be applied without

inflating Type I error.

Define z1 as the first-stage test statistic, ñ2 as the incremental sample size at

the second stage, and δ̂1 as the observed treatment effect at stage 1. Mehta and

Pocock (2011) partitioned the conditional power value, CPδ̂1 (z1, ñ2), into three zones:

unfavorable zone, promising zone and favorable zone. CPδ̂1 (z1, ñ2) < CPmin defined

the unfavorable zone, while CPmin depends on nmax/n2, n1/n2 and 1−β, which means
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that the interim result is so disappointing that it is not worth increasing the sample

size. CPmin ≤ CPδ̂1(z1, ñ2) < 1− β defined the promising zone, with results that are

not disappointing but not good enough for the conditional power to equal or exceed

the unconditional power specified at the design stage. CPδ̂1(z1, ñ2) ≥ 1 − β defined

the favorable zone, in which the interim results are favorable. This approach can be

extended to a two-stage group sequential design with possible early stopping at stage

one. We present the stepwise adaptive design with the constraint of n1/n2 = 0.5

and Gao’s method on two-stage group design where nmax/n2 = 2, n1/n2 = 0.5 and

1 − β = 0.9 in Figure 2.3 (left). The sample size in Gao’s adaptive design is up to

double the sample size of the two-stage group sequential design when the interim test

statistic is in the promising zone. We also compare the second-stage critical values

for different designs. Mehta and Pocock (2011) mentioned that the Type I error was

preserved even when the conventional test was performed, and suggested using the

second-stage boundary of the unfavorable zone/the favorable zone for the promising

zone. Figure 2.3 (right) shows the observed treatment effect at the study boundary

when the trial is stopped for designs with α = 0.05. The observed treatment effect

at the boundary of Gao’s adaptive design is much smaller than the stepwise adaptive

design due to the big sample size increase in the promising zone even if we use the

conventional test. Figure 2.4 show the power and expected sample size from the

stepwise adaptive and Gao’s adaptive design. When we match the power of the

stepwise adaptive design with Gao’s adaptive design at 0.5δ, the power is higher for
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Figure 2.3: Total sample size N/Nfix (left) and observed treatment effect at study
boundary (right). Stepwise adaptive design and Gao’s adaptive designs have n1/n2 =
0.5, the stepwise adaptive design is optimized for prior θ ∼ N(δ/2, (δ/2)2), and the
maximum sample size for Gao’s adaptive design can be up to double the size of the
sample size for a two-stage group sequential design to have 90% conditional power
when the first-stage test statistic fall into promising zone.

the stepwise adaptive design if the true mean is δ and the expected sample size is

generally smaller for the stepwise adaptive design.

2.6 Discussion

Lokhnygina and Tsiatis (2008) presented a fully optimized two-stage design that

has minimum expected sample size averaged over a range of alternatives. In this

paper, we simplified this design and presented a method to create a pre-specified

optimal two-stage design with a limited set of stage two sample size possibilities to

lessen the information revealed at the interim analysis.

In this paper, we focus the stepwise adaptive design with two choices of second-

stage sample size for the prior distribution of θ ∼ N(δ/2, (δ/2)2). We set the choice

of second-stage sample size to one value when the first-stage test statistic is close to
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Figure 2.4: Power Curve (left) and expected sample size (right). Grey line shows
the power curve for a stepwise adaptive design which matched the power of Gao’s
adaptive design at 0.5δ.

either the futility bound or efficacy bound at the first interim analysis, i.e., n2 = n4,

and to a different value when the first-stage test statistic falls into an intermediate

region away from the first-stage stopping boundaries, i.e., an intermediate treatment

effect is observed that is not particularly close to the null or alternate hypothesis effect

size. This feature of the design improves blinding of the interim treatment effect by

lessening the information revealed at the interim analysis. Each second-stage sample

size corresponds to one range or two ranges of the first interim analysis test statistic,

as shown in Table 2.1. If the study proceeds to the second stage with sample size of

0.68Nfix, we know only that the standardized first-stage test statistic is between 0.69

and 1.70. If the study proceeds to the second stage with sample size of 0.55Nfix, we

know only that the standardized first-stage test statistic is either between 0.48 and

0.69 or between 1.70 and 2.01. The fully optimized two-stage adaptive design has

unlimited choices of second-stage sample size due to its continuous nature and could

therefore reveal one or two exact first interim analysis test results given the choice
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of second-stage sample size. The optimal two-stage group sequential design has only

one choice of second-stage sample size and reveals the least information (only gave

one range of first-interim analysis test statistic). The stepwise adaptive design and

the optimal two-stage group sequential design therefore reveal less information about

the interim treatment effect than the fully optimized adaptive design.

We have seen that the efficiency loss from the stepwise adaptive design may be min-

imal compared to the substantially more complicated fully optimized design (Lokhny-

gina and Tsiatis (2008)). The stepwise adaptive, fully optimized adaptive designs and

optimal two-stage group sequential designs have similar expected sample size and

overall power over the range of θ. Advantages of the stepwise adaptive design over

the optimal two-stage group sequential design are that the minimum second-stage

sample size is much smaller, and the stepwise adaptive design is less likely to require

the maximum sample size compared to the optimal two-stage group sequential design.

Notice the shape of the stepwise adaptive design is not symmetric. This is also true

for the fully optimized two-stage adaptive design (Lokhnygina and Tsiatis (2008)).

This might be caused by the optimization process which requires a minimum expected

sample size for a given prior. We design a symmetric stepwise adaptive design with

equal length of continuation region when the first-stage test statistic is close to the

futility bound or efficacy bound at the first interim. We compare the expected sample

size for the current stepwise adaptive design with this symmetric stepwise adaptive

design. The expected sample size for the current stepwise design relative to a fixed
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sample size design is 0.77096 compared to 0.77107 for the symmetric stepwise adaptive

design.

Levin et al. (2011) recently presented a completely pre-specified optimal adaptive

design. This design is similar to our stepwise adaptive design in that we both used step

functions. Levin et al. (2011) only considered the symmetric design and optimized the

design by assigning half the weight on the null and half the weight on the alternative

and achieved the optimization through adding more steps to the design. Our design

focuses on the design with fewer steps and minimizes the expected sample size over

a range of alternatives.

Chuang-Stein et al. (2006) pointed out that the interim treatment effect size can

be highly variable and potentially too unreliable to be used directly for sample size

re-estimation purposes. And in general, the sample size re-estimation design based

on conditional power is likely not optimized for expected sample size. Jennison and

Turnbull (2003) have demonstrated that mid-course sample size modification based

on the observed treatment effect come with the cost of efficiency when compared with

group sequential designs. The stepwise adaptive design is an extension of standard

group sequential design. This design is pre-specified at the design stage as the group

sequential design and also provides the opportunity of sample size adaptation with

great efficiency. The stepwise adaptive design provides a solution by combining the

prior information and the information within a trial.

We have found our stepwise adaptive design is competitive with fully optimized
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two-stage adaptive and with optimal two-stage group sequential designs, but reveals

less information about interim treatment effect than the fully optimized adaptive

design and has the potential to increase sample size based on interim results.
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Chapter 3

Sample Space Ordering and

Inference for Group

Sequential/Adaptive Designs

3.1 Introduction

Armitage, McPherson, and Rowe (1969) numerically showed that if significance

tests at a fixed level are repeated at interim analyses, the Type I error rate (or α) is

greatly increased over the nominal level. Simple group sequential methods for a pre-

defined number of equally spaced interim analyses were developed by Pocock (1977)

and O’Brien and Fleming (1979) to control the Type I error rate by adjusting the

critical values. Wang and Tsiatis (1987) generalized Pocock (1977) and O’Brien and
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Fleming (1979) designs to a class of group sequential tests, also referred as boundary

families. But the boundary family designs assume the maximum number of analyses,

K, be fixed in advance and require equally spaced interim analyses. Lan and DeMets

(1983) suggested an alternative method to construct discrete sequential boundaries

by using α-spending functions. The boundary at a decision time is determined by

α(t), where t is the timing of the interim analysis, which is also called information

time. Information time t is defined as Ii/Imax for i = 1, . . . , K, where Ii is the

statistical information at analysis i and Imax represents the maximum planned infor-

mation at the time of design. Kim and DeMets (1987) and Hwang, Shih, and DeCani

(1990) individually extended the method of Lan and DeMets (1983) to a general one-

parameter family of α-spending functions, α(t; γ) = α × hγ(t), where the parameter

γ specifies the rate of α-spending. The function h(t) is increasing in t ∈ (0, 1) with

h(0) = 0 and h(t) = 1 for t ≥ 1. Pampallona, Tsiatis, and Kim (2001) extended

the Type I error spending method of Lan and DeMets (1983) by incorporating an

analogous Type II error (or β) spending function for interim analyses to test futility.

Anderson and Clark (2010) discussed additional one- and two-parameter spending

families. Their two- or three-parameter spending function families provide additional

flexibility to customize the shape of spending functions to fit more than one desired

critical value. The spending function approach has become common because of its

flexibility in accommodating unequally-spaced analyses and allowing some leeway in

moving, adding or deleting interim analyses as long as this is done without knowledge
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of treatment effects. This is compared to boundary families which require a fixed total

number of analyses, generally performed at equally-spaced intervals. The boundaries

constructed by α- and β- spending functions are determined by the past and current

information times but not by future information times, and not by the total number

of analyses. These are the properties of the spending function approach that allow

flexibility in resetting timing of analyses during the course of the trial.

Group sequential designs with asymmetrical boundaries permit clinical trial stop-

ping for efficacy when the interim results cross the upper boundaries or stopping for

futility when the interim results cross the lower boundaries. Boundaries of the group

sequential design define the acceptance or rejection of the null hypothesis of the group

sequential test on their own, however the boundaries do not provide additional in-

formation about the relative strength of the evidence to reject the null hypothesis.

For i = 1, 2, . . . , K, let Zi be the test statistic against the null hypothesis H0 in favor

of the alternative hypothesis H1 at analysis i. Let Ci be the continuation region at

analysis i and CK = ∅. Ω is the sample space defined by a classical group sequential

design, that is, the set of all pairs (i, zi) where zi /∈ Ci so that the test can terminate at

stage i with (T, ZT ) = (i, zi). A p-value for testing H0 can be stated as the probability

under the null hypothesis of obtaining (i, zi) as extreme or more extreme than the

observed (i∗, z∗i ), where “extreme” refers to the ordering of Ω. A fixed sample design

(with no monitoring) has unique ordering of the sample space under the normality

assumption due to the monotone likelihood ratio property. The p-value converges to
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0 as z → ∞, and the p-value converges to 1 as z → −∞ for a fixed sample design.

But this is not the case for a group sequential trial. Since the number of observations

varies between different stages, there are many ways to order the possible outcomes.

We start with a brief review of the basic concepts of group sequential testing

and existing sample space orderings for group sequential designs, including stage-

wise ordering by Tsiatis, Rosner and Mehta (1984); maximum likelihood estimate

(MLE) ordering by Emerson and Fleming (1990); likelihood ratio ordering or z-score

ordering by Chang (1989); score test ordering or B-value ordering by Rosner and

Tsiatis (1988), and sequential p-value ordering by Liu and Anderson (2008a). We

prefer to use sequential p-value ordering because this method uses the totality of

the accumulating data which takes into account the entire sample path, while the

other orderings only consider the data where the boundary was crossed or the data

at the current analysis. We will show that spending functions with the form of

α(t) = α × h(t) do not completely order the sample space using the power spending

function as an example. This has the disadvantage that there is often a broad range

of the sample space at an interim analysis where the p-value is 1. The exponential

spending function from Anderson and Clark (2010), αe(t; ν) = αt
−ν

, has a different

form from most commonly used spending functions. We will define what we mean

by the complete ordering of a group sequential sample space and show that a Wang-

Tsiatis boundary family or an exponential spending function family or Lan-DeMets

O’Brien-Fleming approximation can completely order the sample space. We also
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propose a simple method to transform a spending function to a completely ordered

sample space when using the sequential p-value ordering, a power spending function

will be used as an example. This method is also extended to β-spending functions

for p-values to reject the alternate hypothesis. We’ll then give examples to illustrate

our approach.

3.2 Review of Group Sequential Testing

Consider a group sequential trial with K > 1 analyses which generates the se-

quence of test statistics Z1, Z2, . . . , ZK . Let θ represent the single parameter of inter-

est, which is the treatment effect in our case. The amount of statistical information

about θ at analysis i is denoted by Ii, i = 1, 2, . . . , K, with 0 < I1 < I2 < . . . < IK .

In many situations Ii is proportional to the number of observations (or events) at

interim analysis i, i = 1, 2, . . . , K. Assume that the distribution of test statistics

Z1, Z2, . . . , ZK for the K analyses follows a multivariate normal distribution with

E{Zi} = θ
√
Ii, (3.2.1)

Cov(Zj, Zi) =
√
Ij/Ii (3.2.2)

for 1 ≤ j ≤ i ≤ K. Jennison and Turnbull (2000) refer to this as the ‘canonical form’

for group sequential designs.

We consider testing the null hypothesis H0 : θ = 0 against the alternative H1 : θ =

δ for a fixed δ > 0 with one-sided Type I error probability α and power 1−β at θ = δ.
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Let Ci be defined as the continuation region at stage i, i.e., Ci =
⋂i
j=1{aj ≤ Zj < bj},

for i = 1, . . . , K − 1. Note that CK = ∅ with aK = bK . Let ai be the lower boundary

and it is also called the futility boundary. Let bi be the upper boundary and it is also

called the efficacy boundary. For i = 1, . . . , K − 1, the trial is stopped for efficacy at

the ith interim analysis to reject H0 if Zi ≥ bi, is stopped for futility to reject H1 if

Zi < ai, and continues if ai ≤ Zi < bi. At the final analysis, the null hypothesis H0

is rejected if ZK ≥ bK .

First, we consider a binding lower boundary, i.e., the trial must be stopped once

either the upper or the lower boundary is crossed. For i = 1, . . . , K, the probability

of crossing an upper bound at analysis i without previously crossing any bound for

any θ is

αi(θ) = Pθ{{Zi ≥ bi}
i−1⋂
j=1

{aj ≤ Zj < bj}} (3.2.3)

The value αi(0) is commonly referred to as the amount of α (Type I error) spent at

analysis i, for i = 1, . . . , K. The total Type I error for a trial will be denoted by

α(0) ≡
∑K

i=1 αi(0).

For i = 1, . . . , K, the probability of crossing a lower bound at analysis i without

previously crossing any bound for any θ is

βi(θ) = Pθ{{Zi < ai}
i−1⋂
j=1

{aj ≤ Zj < bj}}. (3.2.4)

The value βi(δ) is commonly referred to as the amount of β (Type II error) spent at

analysis i, for i = 1, . . . , K. The total Type II error for a trial will be denoted by

β(δ) ≡
∑K

i=1 βi(δ).
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Sometimes the futility boundary is considered just a guideline, which means that a

study can continue even though the futility boundary has been crossed with Zi < ai,

for i = 1, . . . , K − 1. The futility boundaries are then called non-binding futility

boundaries. In this case, the boundaries ai and bi are defined by replacing αi(θ) in

(3.2.3) with α+
i (θ) where

α+
i (θ) = Pθ{{Zi ≥ bi}

i−1⋂
j=1

{Zj < bj}} (3.2.5)

and

α+(θ) ≡
K∑
i=1

α+
i (θ). (3.2.6)

.

3.3 Review of Sample Space Ordering

It is important to provide the strength of evidence to reject the null hypothesis H0 :

θ = 0 after a trial is complete or even during a trial. For a trial with no monitoring,

the p-value should be uniformly distributed under H0, i.e., Pr{p-value ≤ p} = p

for all 0 ≤ p ≤ 1. As the z-value increases from −∞ to ∞, Pr(Z > z) decreases

from 1 to 0 for a one-sided test. For a group sequential trial, a p-value for testing

H0 can be stated as obtaining (i, zi) as extreme or more extreme than the observed

(i∗, z∗i ), where “extreme” refers to the ordering of the sample space Ω, which is the

set of all possible outcomes. Let (i′, z′i) � (i, zi) denote that (i′, z′i) is above (i, zi)

in a given ordering. Jennison and Turnbull (2000) and Proschan, Lan and Wittes
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(2006) summarized four sample space orderings by using the value of (i, zi) at trial

termination:

A. Stage-wise ordering by Tsiatis, Rosner and Mehta (1984), (i′, z′i) � (i, zi) if (1)

i′ = i and z′i ≥ zi (2) i′ < i and z′i ≥ bi′ (3) i′ > i and zi ≤ ai.

B. Maximum likelihood estimate (MLE) ordering by Emerson and Fleming (1990),

(i′, z′i) � (i, zi) if z′i/
√
Ii′ > zi/

√
Ii, where Ii is the statistical information.

C. Likelihood ratio ordering or z-score ordering by Chang (1989), (i′, z′i) � (i, zi)

if z′i > zi.

D. Score test ordering or B-value ordering by Rosner and Tsiatis (1988), (i′, z′i) �

(i, zi) if z′i
√
Ii′ > zi

√
Ii.

For MLE, z-score, and B-value ordering, the p-value depends on the information

levels or group sizes beyond the observed stopping stage T = τ , while stage-wise

ordering has the property that the p-value does not depend on the information lev-

els or group sizes beyond the observed stopping stage T = τ . Stage-wise ordering

automatically ensures that the p-value is less than the significance level α of the

group sequential test if and only if H0 is rejected. Jennison and Turnbull (2000)

and Proschan, Lan and Wittes (2006) recommended stage-wise ordering. However,

stage-wise ordering also has limitations: (1) Stage-wise ordering does not provide a

p-value when the test statistic has not crossed either boundary. (2) Stage-wise order-

ing does not provide final analysis for data over-running, which might happen due to

additional patient enrolled and staggered data entry after boundary was crossed at
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the interim analysis (although this has been dealt with by Whitehead (1992)). (3)

When a test statistic is on an interim boundary, stage-wise ordering rejects the null

hypothesis at a significance level less than α. (4) A stage-wise p-value can not be

arbitrarily small after the first interim analysis, even if the test statistic is big or

evidence to reject the null is strong; i.e., the p-value for crossing at an analysis after

the first interim is always larger than the nominal p-value for a case where the first

interim bound is crossed.

Liu and Anderson (2008a) introduced an extended group sequential design (EGS

design), which is a group sequential design with the stopping time τ , taking values

of 1, 2, . . . , K. τ may precede, coincide with, or exceed the boundary crossing time.

An EGS test is defined as positive if any interim or final efficacy bound is crossed,

which corresponds to the event
⋃K
i=1[{τ = i}

⋂⋃i
j=1{Zj ≥ bj}] occurs. For an EGS

test indexed by a parameter µ ∈ (0, 1), there exist bi(µ) for i = 1, 2, . . . , K, such that

P0{Z1 ≥ b1(µ)
⋃

Z2 ≥ b2(µ)
⋃

. . .
⋃

ZK ≥ bK(µ)} = µ.

The class of boundaries indexed by µ ∈ (0, 1) is defined as a well-ordered class if the

boundary bi(µ) is continuous and decreasing in µ and converges to ∞ as µ → 0 for

any i = 1, 2, . . . , K.

Liu and Anderson (2008a) considered ordering the sample space using the totality

of the accumulating data. For any sample path ω = {τ ;Z1, . . . , Zτ}, a repeated p-

value is defined as µ̂(i) = sup{µ : Zi ≤ bi(µ)} for i = 1, 2, . . . , τ . A sequential p-value
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is defined as pi = min1≤j≤i{µ̂(j)}. The final sequential p-value is defined as

pτ = min{µ̂(i) : i = 1, . . . , τ}.

Any two sample paths, ω′ and ω′′, are said to follow the order � if and only if their

final p-values, p′τ ′ and p′′τ ′′ , follow the order of p′τ ′ ≥ p′′τ ′′ . If ω′ � ω′′ and ω′′ � ω′′′,

then ω′ � ω′′′. Thus the ordering is well defined.

The fundamental difference between Liu and Anderson (2008a) sequential p-value

ordering and other orderings including stage-wise, MLE, z-value, and B-value ordering

is that the sequential p-value ordering uses the totality of the accumulating data

which takes into account the entire sample path ω = {τ ;Z1, . . . , Zτ}, while the other

orderings only consider the data where the boundary was crossed {τ ;Zτ} or at the

most recent analysis. Liu and Anderson (2008a) summarized several features of the

sequential p-values: (a) The final p-value, pτ , adheres to the ITT principle that

all available data are analyzed; (b) sample paths reaching the same boundary have

identical p-values; and (c) pτ is always significant if the significance boundary is

crossed at any stage, not requiring Zτ ≥ bτ . We prefer to use sequential p-value

ordering from Liu and Anderson (2008a) because this method uses the totality of the

accumulating data and does not reverse inference once it is made.

3.4 Complete Ordering of Sample Space

To completely order the sample space as the fixed sample design, we define the

class of boundaries as completely ordered if the boundary bi(µ) is continuous and
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decreasing in µ, converging to ∞ as µ → 0, and converging to −∞ as µ → 1 for

any i = 1, . . . , K for a group sequential trial. A completely ordered sample space is

a well ordered sample space, but the reverse is not necessarily true. A sample space

can be well ordered without the boundary converging to −∞ as µ→ 1 for at least 1

i ∈ 1, . . . , K for a group sequential trial.

The Pocock design from the boundary families is an example of complete ordering

of sample space based on a sequential p-value ordering. The sample space in the

boundary scale has complete coverage from −∞ to +∞ in the z-value scale for any

i = 1, . . . , K. And similarly, the sample space has complete coverage from 0 to 1 in

the probability scale for any i = 1, . . . , K. Figure 3.1 gives an example of a Pocock

design with 5 analyses. At the 3rd analysis, the test statistic crossed the boundary

for the pre-specified α = .025. The trial continued after the 3rd interim analysis and

stopped at the 4th interim analysis to collect more safety data. The repeated p-values

were 0.337, 0.098, 0.010, and 0.018, respectively. The sequential p-values were 0.337,

0.098, 0.010, and 0.010. The final sequential p-value was 0.010.

Boundary family tests, e.g., the Wang-Tsiatis family, including Pocock, O’Brien-

Fleming boundary, produce completely ordered sample spaces when using sequential

p-values to order the sample space. But the reduced flexibility of the boundary fam-

ily tests prevents their broader application in real situations, since change the timing

of interim analyses during the trial will result in changing the bounds already used.

The spending function approach has increased popularity since it provides flexibil-
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Figure 3.1: Ordering of Sample Space by total Type I error associated with the bound:
Pocock design with 5 equally spaced interim analyses.
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ity in changing the timing of interim analyses while keeping intact the bounds used

before. Lan and DeMets (1983) introduced spending functions to approximate the

Pocock boundary (α(t) = α(1 + log(1 + (e− 1)t))) and the O’Brien-Fleming bound-

ary (α(t) = 2(1 − Φ(Φ−1(1−α/2)√
t

))). Kim and DeMets (1987) introduced a spending

function based on the power function (α(t, ρ) = αtρ). Hwang, Shih, and DeCani

(1990) proposed a general one-parameter spending function to construct customized

group sequential boundaries (α(t, γ) = α
1−exp(−γt)
1−exp(−γ)

). Anderson and Clark (2010)

introduced an exponential spending function α(t) = αt
−ν

and a general spending

function α(t; ν) = 2(1 − F (F
−1(1−α)√

tν
)) (Equation 10 in Anderson and Clark (2010)).

Both O’Brien-Fleming-type spending function and the exponential spending function

are special cases of equation 10 of Anderson and Clark (2010). With the exception of

the exponential family and O’Brien-Fleming-type spending function, other spending

functions have the form α(t) = α × h(t) with t ∈ (0, 1) as the timing of the interim

analysis. We attempt to order a sample space by using spending functions as follows:

set up a spending function for each α level, compute corresponding bounds for each

interim, if an interim or final analysis crosses a bound, it is significant at that level.

We set significance by the ’most significant’ bound reached. This will require that the

spending function produces ordered sets of bounds as we have seen for the Pocock de-

sign where no bounds crossed others. Theorem 1 below gives sufficient conditions for

well ordered sample space and shows that the spending functions like α(t) = α×h(t)

generate well ordered sample spaces when using the sequential p-value to order the
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sample space. Maurer and Bretz (2013) provides similar conditions for well ordered

sample space, in which they call it well ordered families of spending functions and

define that through nominal significance levels at the ith interim analysis rather than

the corresponding boundary values. We define the sample space as well ordered when

the boundary bi(α) is continuous and decreasing in α, converging to ∞ as α→ 0, for

any i = 1, . . . , K for a group sequential test when using sequential p-value to order

the sample space.

Definition 1. A function f(t, α) is a spending function if for some arbitrary

0 < α < 1

• f(0, α) = 0,

• f(t, α) = α for t ≥ 1, and

• f(t, α) is increasing for t > 0.

Definition 2. Assume the canonical form for some K > 1 with 0 < t1 < t2 . . . < tK =

1 and corresponding multivariate normal random variables Z1,Z2,. . .,ZK. Assume

further that for some 0 < α < 1 that f(t, α) is a spending function with f(1, α) = α.

Then bi(α) defined implicitly through

f(t1, α) = Pr{Z1 ≥ b1(α)} (3.4.1)

and

f(ti, α)− f(ti−1, α) = Pr{{Zi ≥ bi(α)}
i−1⋂
j=1

{Zj < bj(α)}} (3.4.2)

i = 2, 3, . . . , K are referred to as spending-function-defined boundaries.

41



www.manaraa.com

Since we will consider different values of α, we have used the notation bi(α) rather

than the simpler and more typical bi.

Definition 3. The class of boundaries indexed by α ∈ (0, 1) is defined as a well-

ordered sample space if the boundary bi(α) is continuous and decreasing in α and

converges to ∞ as α ↓ 0 for any i = 1, 2, . . . , K.

Definition 4. If, in addition, bi(α) converges to −∞ as α ↑ 1 for any i = 1, 2, . . . , K,

then it is defined as a completely-ordered sample space.

Theorem 1. Assume the canonical form for some K > 1 with 0 < t1 < t2 . . . < tK =

1 and corresponding multivariate normal random variables Z1, Z2,. . .,ZK. Assume

further that f(t, α) is a spending function with f(1, α) = α for any 0 < α < 1 and

that for i = 2, 3, . . . , K and any 0 < α1 < α2 < 1 that

f(ti, α1)− f(ti−1, α1) < f(ti, α2)− f(ti−1, α2) (3.4.3)

Assume f(ti, α) is continuous and increasing in α for i = 1, 2, . . . , K. Then f(t, α)

defines a well-ordered sample space.

Proof. (proof by induction) Let α1 < α2.

For i = 1, f(t1, α) = Pr{Z1 ≥ b1(α)}, so b1(α) = Φ−1(1− f(t1, α)).

Since f(ti, α) is continuous and increasing in α for i = 1, 2, . . . , K, α1 < α2 =⇒

f(t1, α1) < f(t1, α2) =⇒ b1(α1) > b1(α2).

Now assume the result holds for i − 1 where i > 1. For i = 2, . . . , K, f(ti, α) −

f(ti−1, α) = Pr{{Zi ≥ bi(α)}
⋂i−1
j=1{Zj < bj(α)}}.
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Assume f(t, α) does not defines a well-ordered sample space and bi(α) is not

decreasing in α. Assume bi(α1) = bi(α2) . Since bi−1(α1) > bi−1(α2), Pr{{Zi ≥

bi(α1)}
⋂i−1
j=1{Zj < bj(α1)}} > Pr{{Zi ≥ bi(α2)}

⋂i−1
j=1{Zj < bj(α2)}}

Thus,

f(ti, α1)− f(ti−1, α1) > f(ti, α2)− f(ti−1, α2).

This contradicts equation (3.4.3) the assumption of an increasing α spending. By

induction, f(t, α) defines a well-ordered sample space, i.e., bi(α) is decreasing in α

for i = 1, 2, . . . , K. �

Corollary 2. Assume the canonical form for some K > 1 with 0 < t1 < t2 . . . < tK =

1 and corresponding multivariate normal random variables Z1, Z2, . . .,ZK. Assume

that for 0 < α < 1 that f(t, α) is a spending function, and that f(t1, α) < f(t2, α) <

. . . < f(tK) = α. Assume further that for i = 1, 2, . . . , K that f(ti, α) is continuous

and differentiable in α with

df(ti, α)

dα
> 0

and for i = 2, . . . , K and any α

df(ti, α)

dα
>
df(ti−1, α)

dα
.

Then f(t, α) forms a well-ordered sample space.

Proof. For i = 2, . . . , K, let 0 < α1 < α2 < 1 and 0 < t1 < t2 < 1.

f(ti, α2)− f(ti, α1) > f(ti−1, α2)− f(ti−1, α1).
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Thus, f(ti, α2)− f(ti−1, α2) > f(ti, α1)− f(ti−1, α1). Per Theorem 1, f(t, α) forms a

well-ordered sample space.

Corollary 3. Assume the canonical form for some K > 1 with 0 < t1 < t2 . . . < tK =

1 and corresponding multivariate normal random variables Z1, Z2, . . .,ZK. Assume

h(t) is an increasing function in t with 0 = h(0) < h(t1) < h(t2) < . . . < h(tK) = 1.

Let

f(t, α) = α× h(t).

Then f(t, α) forms a well-ordered sample space.

Proof. f(t, α) = α× h(t). Then, f(t2, α)− f(t1, α) = α× (h(t2)− h(t1))

Since h(t2)−h(t1) > 0, then α1 < α2 =⇒ f(ti, α1)−f(ti−1, α1) < f(ti, α2)−f(ti−1, α2),

for i = 2, 3, . . . , K. Per Theorem 1, f(t, α) forms a well-ordered sample space.

It is a special case of Theorem 1.

Corollary 3 shows that for f(t, α) = α × h(t), as long as h(t) is an increasing

function in t, it is sufficient to conclude that these spending functions define a well-

ordered sample space for any i = 1, . . . , K. But this is not sufficient to conclude that

these spending functions completely order the sample space for any i = 1, . . . , K,

which requires the boundary converges to −∞ as µ→ 1 for any i = 1, . . . , K.

The spending functions with the form of α(t) = α × h(t) does not provide a

complete ordering of the sample space for the entire sample path, e.g., the z-value

does not have complete coverage from −∞ to +∞ for early analysis. The power

family with ρ = 1 (α(t) = αtρ) provides an example sample space ordering as shown
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Figure 3.2: Ordering of Sample Space by total Type I error associated with the bound:
Power spending function with ρ = 1

in Figure 3.2. In this example, at the first interim, the repeated p-value is 1 for any

nominal p-value ≥ 0.2 or the z-value is ≤ 0.84.

On the other hand, the O’Brien-Fleming-type spending function by Lan and

DeMets (1983) as shown in Figure 3.3 provides a complete ordering on both the

z-value scale and the α-spending scale. But there are limitations, too. The shape of

the boundaries or the speed of α spending is fixed, which means it is not flexible to

change the shape of the boundaries or the speed of α-spending. Fortunately, there are

other spending functions which can provide both the flexibility and also completely

order the sample space.

The exponential spending function (αi(ti) = αt
−ν
i ) has complete coverage of (0,1)
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Figure 3.3: Ordering of Sample Space by total Type I error associated with the bound:
O’Brien-Fleming-type spending function
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for α, and the z-value has complete coverage from −∞ to +∞ for any i = 1, . . . , K.

And the exponential spending function can change the shape of the boundary to

provide flexibility by modifying the parameter ν. Figure 3.4 gives the cumulative α

spending function and boundary for the exponential spending function with param-

eter ν = 0.8. For α = 0.025, Anderson and Clark (2010) showed that this spending

function approximates the O’Brien-Fleming boundaries. Figure 3.5 provides the cu-

mulative α spending function and boundary for the exponential spending function

with parameter ν = 0.2, which approximates Pocock boundaries for small α. We

can also show by example that the exponential spending function family completely

orders the sample space: the boundaries bi(α) are continuous and decreasing in α,

converging to∞ as α→ 0, and converging to −∞ as α→ 1 for any i = 1, . . . , K; see

Figure 3.6 for ν = .8.

The power spending function and the Hwang-Shih-DeCani spending function are

used widely to calculate spending function boundaries because they provide great

flexibility for clinical trial design. It would be nice to retain the integrity of the

boundary shape at the pre-specified significance level and to have the boundaries

completely cover the sample space when using sequential p-value to order the sample

space.

In the following we propose a method to transform the spending function f(t, α) =

α × h(t) at a pre-specified significance level α0 to a new spending function family

g(t, ρ), which defines a completely ordered sample space when using sequential p-
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Figure 3.4: Ordering of Sample Space by total Type I error associated with the bound:
Exponential Spending Function with ν = 0.8, which approximates O’Brien-Fleming
boundary
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Figure 3.5: Ordering of Sample Space by total Type I error associated with the bound:
Exponential Spending Function with ν = 0.2, which approximates Pocock boundary
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with ν = 0.8, which approximates O’Brien-Fleming boundary
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values as defined by Liu and Anderson (2008a). This will also provide a method of

forming confidence intervals.

Conjecture 4. Assume the canonical form for some K > 1 with 0 < t1 < t2 . . . <

tK = 1 and corresponding multivariate normal random variables Z1, Z2, . . .,ZK. As-

sume α0 is pre-specified significance level for a group sequential test and f(t, α0) =

α0×h(t) is the pre-specified increasing spending function in t with 0 < h(t1) < h(t2) <

. . . < h(1) = 1. We define

g(t, ρ;α0) = (f(t, α0)logρ/logα0

(3.4.4)

with 0 < ρ < 1 and a family of boundary crossing probabilities

g(ti, ρ)− g(ti−1, ρ) = Pr{{Zi ≥ b∗i (ρ)}
i−1⋂
j=1

{Zj < b∗j(ρ)}} (3.4.5)

Then g(t, ρ) defines a completely-ordered sample space. When ρ = α0, g(t, ρ) =

f(t, α0).

We show below that specific definition of

α∗(ρ) = g(t, ρ)

= (f(t, α0)logρ/logα0

= (α0 × h(t))logρ/logα0

= ρ× h(t)logρ/logα0

can completely order the group sequential design sample space for a pre-specified

spending function f(t, α) = α×h(t), with α0 as a pre-specified significance level. And
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ρ can be interpreted as α∗, which can be directly used as the sequential p-value to or-

der the sample space. When ρ = α0, α∗(ρ) = ρ×h(t)logρ/logα0
= α0×h(t) = f(t, α0).

Thus the boundary by equation 3.4.5 would be the same as the boundary by the pre-

specified spending function f(t, α) at the level α0, which then retain the integrity of

the boundary shape at the pre-specified significance level.

We use the power spending function as an example. For a group sequential design,

the power spending function with parameter ρ = 1, α(t) = α × t, and significance

level of 2.5 percent are selected to design the clinical trial with 5 interim analyses.

Then the efficacy boundaries can be calculated for α0 = 0.025. Figure 3.2 showed

that the z-value does not have complete coverage from −∞ to +∞ for early anal-

ysis. The spending function of α(t) = α × t cannot completely order the group

sequential design sample space. However, we can introduce a specific definition of

α∗(t) = (α0 × t)logα∗/logα0
= α∗ × tlogα∗/logα0

to completely order the sample space

as shown in Figure 3.7. When α∗ = α0 = 0.025, the boundary defined by the spend-

ing function of α∗ is the same as the boundary defined by α0 = 0.025. So the specific

spending function of α∗ keeps the integrity of the efficacy boundary of the pre-specified

significance level α0. And the spending function of α∗ completely orders the sample

space in the z-value scale and the cumulative α∗-spending scale. This can also be

illustrated by Figure 3.8, which shows b∗i (α
∗) as a function of α∗. For each interim

analysis, the z-value has complete coverage.
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Figure 3.7: Ordering of Sample Space by total Type I error associated with the bound:
Power Family with ρ = 1 and α0 = 0.025
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3.5 Illustrative Example

We use the example from Liu and Anderson (2008a) to illustrate how to use the

exponential spending function and the transformation of the spending function α(t) =

α×h(t) to completely order the sample space and get sequential inference. Nosocomial

Pneumonia (NP) is the second most common nosocomial infection after urinary tract

infection, and is the most common infection in the intensive care unit setting. The

clinical cure rate is around 50% with existing options of various antibiotics. The

mortality rate for NP exceeds 30%. Now consider a clinical trial to evaluate whether

a new regimen can improve the clinical cure rate over an existing regimen. It’s also

important to evaluate mortality. A group sequential design is a suitable option,

because the primary endpoint is readily evaluated over 14 days, and the enrollment is

not very rapid. The trial may be continued to allow evaluation of a 30-day mortality

endpoint even though a significance boundary for the primary endpoint has been

crossed. The hypothesized treatment effect sizes are 10% improvement in cure rate for

the new antibiotic and 10% improvement in survival rate. The arcsin transformation

of proportions were employed to apply normal approximation and the effect sizes are

∆1 = 0.1424 and ∆2 = 0.1124. K=10 analysis are planned. The power spending

functions α(i/K)ρ and β(i/K)η for i = 1, 2, . . . , K,α = 0.025 and β = 0.1, are used

to calculate the efficacy and futility boundaries. For the cure endpoint, ρ1=2 and

η1=4 are set. For the mortality endpoint, ρ2 = 4 and η2=2 are set.

We use the 2nd data set generated randomly by Liu and Anderson (2008a) under
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the parameter configuration ∆1 = 0.1424 and ∆2 = 0. We re-analyze these data using

an exponential spending function with parameter ν = 0.8 and a spending function

of α∗ = (α0t)logα∗/logα0
, with a pre-specified significance level α0 = 0.025. Table

3.1 gives the results of sequential inference as well as the results from the authors.

The mortality endpoint crosses the futility boundary at the third interim analysis.

The trial continues to the fifth analysis, where the primary endpoint crosses the

significance boundary. For the primary endpoint, the sequential p-value provided by

the power spending function is 1.000 for the 1st interim analysis, while the sequential

p-values provided by the exponential spending function and the spending function

of α∗ = (α0t)logα∗/logα0
are less than 1.000, due to the completely ordered sample

space by the exponential spending function and the α∗-spending function. When

α∗ = α0 = 0.025, the boundary using the spending function of α∗ is the same as the

boundary defined by α0 = 0.025. This property guarantees that the boundary defined

by the α∗-spending function will be crossed whenever the designed boundary at the

pre-specified significance level is crossed. This can be verified by the closeness of

the sequential p-values of the power spending function and the α∗-spending function

at the 5th interim analysis, which are 0.010 and 0.012, respectively. Data from the

primary endpoint illustrate the situation when the drug is efficacious for the cure

endpoint. Data from the secondary endpoint illustrate the situation when the drug is

not effective for the mortality endpoint. The sequential p-values from power spending

function are 1.000 for all interim analyses, because the power spending function could
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Table 3.1: Sequential Inference for Nosocomial Pneumonia (NP) Study

Analysis (i)
1 2 3 4 5 6

Primary endpoint
b1i 3.481 3.152 2.951 2.794 2.661 2.545
Z1i 1.355 1.950 2.333 2.472 2.982 3.220
a1i -3.188 -2.087 -1.320 -0.694 -0.148 0.346
p1i 1.000 0.730 0.144 0.061 0.010 0.003
pe1i 0.680 0.366 0.175 0.095 0.0247 0.008
p∗1i 0.339 0.174 0.080 0.049 0.012 0.004

Secondary endpoint
b2i 4.565 3.957 3.571 3.272 3.020 2.796
Z2i -0.516 -0.505 -1.104 -1.163 -0.626 -0.847
a2i -2.000 -1.173 -0.586 -0.101 0.322 0.703
p2i 1.000 1.000 1.000 1.000 1.000 1.000
pe2i 0.944 0.937 0.989 0.994 0.951 0.980
p∗2i 0.902 0.960 0.998 0.999 0.987 0.997

b1i efficacy boundary, Z1k observed test statistics, a1k futility boundary
p1i sequential p-value from power spending function
pe1i sequential p-value from exponential (O’Brien-Fleming-type) spending function

p∗1i sequential p-value from spending function of α∗(t) = (α0t)logα∗/logα0

not completely order sample space. Both the exponential spending function and the

α∗-spending function provide proper sequential p-values at all interim analyses. For

the primary analyses, the sequential p-values given here are a good caution to not

stop the trial early; for instance, at interim 3, the nominal p-value for z = 2.333 is

0.01 while for each of the example sequential p-values we are not close to the required

0.025 required for a positive efficacy finding. The large p-values near 1 are perhaps

not terribly useful here. Because of this, we continue to the next section where we

define p-values for futility analyses.
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3.6 Sample Space Ordering for β-Spending Func-

tion

For a fixed sample size design, a Type II error, β, refers to the probability of

failing to reject a false null hypothesis. Pampallona, Tsiatis, and Kim (2001) extend

the Type I error spending method of Lan and DeMets (1983) by incorporating an

analogous Type II error spending function for interim to test futility, which attempts

to reject H1: θ = δ in favor of H0: θ < δ.

Sequential p-values for the α-spending function provide the evidence to reject

the null hypothesis, when they are used to order the sample space. Setting up an

approach to β-spending that has the opposite one-sided orientation to α-spending

is logically consistent with a different sample space ordering for the futility question

than for the efficacy question. It would be of interest to develop a similar sequential

p-value to reject the alternative hypothesis.

Under the framework of Liu and Anderson (2008a) extended group sequential

design, it is noticeable the one-sided nature of the sample space ordering done with

α-spending with a futility boundary considered as “non-binding”. We also notice that

the boundaries are often asymmetric due to different levels of urgency and stringency

to reject the null versus alternative hypothesis. We should note that often testing

is asymmetric and an approach using two one-sided tests (Schuirmann (1987)) is

common. In the TOST (two one-sided test) framework, the alternative test is rejecting

the alternative hypothesis H1 in favor of the null hypothesis H0. We do not generally
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need a lot of evidence for H0, just a lack of evidence for H1. On the other hand,

substantial evidence is normally required to reject the null hypothesis H0.

For testing futility or β-spending, lower boundary crossing probabilities are testing

against H1 rather than H0 and we can use a different spending function and error

level for futility than that is used for efficacy. We want to stop early for futility

without positive evidence of benefit - this results in aggressive early spending which

is associated with less early evidence required to get a small p-value for rejecting H1.

Under the sample space ordering for β-Spending, We consider the bound for re-

jecting H1 in favor of H0 “non-binding” in order to use logic that is consistent with

that used for rejecting the null hypothesis. Note that α+
i (0) and bi are defined in

equations (3.2.5) and (3.2.6). Given β+
i (δ), ai are defined implicitly by the following

equations:

β+
i (δ) = Pδ{{Zi < ai}

i−1⋂
j=1

{Zj ≥ aj}}. (3.6.1)

β+(δ) ≡
K∑
i=1

βi(δ). (3.6.2)

where Zi are the cumulative test statistics for i = 1, . . . , K− 1. Since efficacy bounds

are generally stringent, the value of β+(δ) will often be close to β(δ), which is defined

in equation (3.2.4).

Similar to sample space ordering by α-spending function, an exponential spending

function can completely order the sample space by β-spending function as shown in

Figure 3.9, which shows the futility boundary as a function of Type II error for expo-
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Figure 3.9: Boundaries as a function of Type II error: Exponential Spending Function
with ν = 0.8. The sample size is fixed as the design with α = 0.025 and β = 0.1.

nential spending function with parameter ν = 0.8. As β increases, futility boundaries

increase at each interim increases.

Similarly, β-spending function with the form of β(t) = β × h(t) could not com-

pletely order the sample space by β-spending function. However, we can introduce a

specific definition of β∗ = (β0 × h(t))logβ∗/logβ0
= β∗ × h(t)logβ∗/logβ0

to completely

order the sample space as shown in Figure 3.10, the boundary b∗(β∗) as a function of

β∗. For each interim analysis, the boundary b∗(β∗) has complete coverage.

We use the same example as previous to illustrate sample space ordering by β-

spending. We re-analyze these data under sample space ordering by β-spending using

an exponential spending function with parameter ν = 0.8 and a spending function
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Figure 3.10: Boundaries as a function of Type II error: Power Family with ρ = 1 and
β0 = 0.1. The sample size is fixed as the design with α = 0.025 and β = 0.1.
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of β∗i (t) = (β0 × h(t))logβ∗/logβ0
, with a pre-specified significance level β0 = 0.1.

Table 3.2 gives the results of sequential inference under sample space ordering by

β-spending. Note that the boundaries and observed test statistics are same for each

interim analysis as those in Table 3.1. We only re-analyze these data under sample

space ordering by β-spending, which is a different orientation from sample space

ordering by α-spending. The mortality endpoint crosses the futility boundary at the

third interim analysis. Of note, while things are trending in the ”wrong” direction

for interims 1 and 2, the evidentiary level given by the sequential p-values suggests

that it is ”too early to give up” and declare futility at that time. The trial continues

to the fifth analysis, where the primary endpoint crosses the significance boundary.

For the primary endpoint, the sequential p-value for β-spending provided by the

power spending function is 1.000 for all interim analyses, because the power spending

function could not completely order sample space. While the sequential p-values for β-

spending provided by the exponential spending function and the spending function of

β∗(t) = (β0×h(t))logβ∗/logβ0
are less than 1.000, due to the completely ordered sample

space by the exponential spending function and the β∗-spending function. Again, for

the secondary endpoint, the sequential p-values for β-spending from power spending

function are 1.000 for the first interim analysis, because the power spending function

could not completely order sample space. Both the exponential spending function and

the β∗-spending function provide proper sequential p-values at all interim analyses.

When β∗ = β0 = 0.1, the futility boundary using the spending function of β∗ is the
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Table 3.2: Sequential Inference under Sample Space Ordering by β-Spending for
Nosocomial Pneumonia (NP) Study

Analysis (i)
1 2 3 4 5 6

Primary endpoint
b1i 3.481 3.152 2.951 2.794 2.661 2.545
Z1i 1.355 1.950 2.333 2.472 2.982 3.220
a1i -3.188 -2.087 -1.320 -0.694 -0.148 0.346
p1i 1.000 1.000 1.000 1.000 1.000 1.000
pe1i 0.925 0.927 0.928 0.892 0.942 0.942
p∗1i 0.906 0.960 0.970 0.950 0.976 0.971

Secondary endpoint
b2i 4.565 3.957 3.571 3.272 3.020 2.796
Z2i -0.516 -0.505 -1.104 -1.163 -0.626 -0.847
a2i -2.000 -1.173 -0.586 -0.101 0.322 0.703
p2i 1.000 0.586 0.022 0.004 0.008 0.001
pe2i 0.630 0.343 0.082 0.024 0.021 0.004
p∗2i 0.378 0.221 0.045 0.015 0.017 0.003

b1i efficacy boundary, Z1k observed test statistics, a1k futility boundary
p1i sequential p-value for β-spending from power spending function
pe1i sequential p-value for β-spending from exponential (O’Brien-Fleming-type)
spending function
p∗1i sequential p-value for β-spending from spending function of

β∗(t) = (β0 × h(t))logβ∗/logβ0

same as the boundary defined by β0 = 0.1.

3.7 Discussion

In this paper, we review the several ways of sample space ordering for group

sequential designs, including stage-wise ordering, MLE ordering, z-score ordering, B-

value ordering and sequential p-value ordering. We prefer to use sequential p-value

ordering from Liu and Anderson (2008a) because this method uses the totality of

the accumulating data and does not reverse inference once it is made. We define
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the complete ordering of a group sequential sample space and show that a Wang-

Tsiatis boundary family or an exponential spending function family can completely

order the sample space. We also show that many popular spending functions, e.g.,

power spending function or Hwang-Shih-DeCani spending function, with the form of

α(t) = α×h(t), do not provide a complete ordering of the sample space for the entire

sample path, e.g., the boundary does not have complete coverage from −∞ to +∞

for early analyses. We propose a simple method to transform a spending function to

a completely ordered sample space when using the sequential p-value ordering. This

method is also extended to β-spending functions for p-values to reject the alternate

hypothesis.

For a group sequential trial with both efficacy and futility boundaries, both the

null and alternate hypotheses can be rejected during the course of a single trial if

both boundaries are crossed (at different times). Using two one-sided sequential p-

values can provide a useful summary of the level of accumulating evidence for and

against both the null and alternate hypotheses as a trial continues. In our example, if

the primary endpoint crossed an efficacy bound and the secondary crossed a futility

bound, we would probably want to stop the trial. On the other hand, if the primary

endpoint crossed the efficacy bound and the secondary endpoint was not yet complete,

the two one-sided sequential p-values provide a summary that may be useful for a

DMC deciding an appropriate action to take.
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Chapter 4

Application of Sequential P-value

Methods to Multiplicity Issues for

Group Sequential Designs
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4.1 Introduction

Multiplicity issues widely exist in clinical trials. Many clinical trials are designed

to study multiple objectives, such as comparing multiple treatment arms with a con-

trol, or testing multiple primary and secondary endpoints. Many multiple testing

procedures were developed for fixed sample designs to control the familywise error

rate (FWER), i.e., the probability of making one or more false discoveries, or Type I

errors, among all the hypotheses when performing multiple hypothesis tests. Interim

analyses are often conducted for ethical and economical reasons in clinical trials in-

volving human subjects. Group sequential methods are commonly used to control

the Type I error when a single primary hypothesis is tested repeatedly at interim

analyses.

There is less literature for application of multiple testing procedures in group

sequential design. Tang and Geller (1999) showed that if there exists a group sequen-

tial procedure to test every intersection hypothesis at level α then application of the

closure principle of Marcus et al. (1976) leads to a group sequential procedure that

controls the FWER at level α in the strong sense, which means that the FWER con-

trol at level α is guaranteed under any configuration of true and false null hypotheses.

Tamhane et al. (2010) studied the FWER under a hierarchical testing procedure of

one primary and one secondary endpoint with different spending functions for differ-

ent endpoints and various effect sizes and with correlation between endpoints. Hung

et al. (2007) showed that testing a secondary hypothesis at nominal level α after the
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primary hypothesis is rejected under a group sequential design might not control the

overall Type I error rate in the strong sense.

Marcus et al. (1976) showed that closed testing procedures control the FWER

in the strong sense at level α. Hommel et al. (2007) has shown that many popular

sequentially rejective, weighted Bonferroni-based procedures belong to a subclass of

weighted Bonferroni-based closed test procedures, such as the Bonferroni-Holm pro-

cedure (Holm (1979)), fixed sequence test (Westfall and Krishen (2001)), the fallback

procedure (Wiens (2003)), and Bonferroni-based gatekeeping procedures (Dmitrienko

et al. (2003)); Bretz et al. (2009); Bretz et al. (2011) proposed graphical approaches

to facilitate the visualization and communication of Bonferroni-based closed testing

procedures for common multiple test problems.

Many multiple testing procedures are based on p-values, e.g., the Bonferroni-Holm

procedure (Holm (1979)), the Hochberg procedure (Hochberg (1988)), the Hommel

procedure (Hommel (1988)). The sequential p-value method of Liu and Anderson

(2008a) provides a valid approach to extend these multiple testing procedures into

group sequential designs. Sequential p-values provide valid p-values at interim and

final analyses and when the significance boundary is crossed at any stage. In general,

sequential p-values can be used as inputs to apply any p-value based multiple testing

procedures in group sequential designs.

In this paper, we extend the use of the sequential p-value method of Liu and

Anderson (2008a) in the multiple testing context. We use the graphical approach
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from Bretz et al. (2009) to illustrate how to use sequential p-values for multiplicity

issues in group sequential designs. We also study the operating characteristics of

multiple testing in group sequential designs, e.g., power and expected sample size.

We show that using a group sequential design in multiple hypothesis testing is more

efficient in terms of expected sample size than fixed sample size designs.

4.2 Methodology

4.2.1 The closure principle

Suppose there are m elementary null hypotheses H1, . . . , Hm to be tested. Let

I = {1, . . . ,m} denote the associated index set. Consider all non-empty intersection

hypotheses HJ = ∩j∈JHj, J ⊆ I. For each intersection hypothesis HJ , there exists a

pre-specified local α level test. The closure principle by Marcus et al. (1976) states

that a test procedure rejects any one of these elementary hypotheses, Hi, i ∈ I at

level α, if all intersection hypotheses involving Hi, e.g., HJ with i ∈ J ⊆ I, can be

rejected by corresponding local level α tests. By construction, a closed test procedure

controls the familywise error rate for all the m elementary hypotheses in the strong

sense at level α ∈ (0, 1). Note that for a given set of m elementary hypotheses, the

closure principle may require testing up to 2m − 1 hypotheses. For example, suppose

there are two elementary hypotheses, H1 and H2. Define the intersection hypothesis

H12 = H1

⋂
H2. The closed test procedure rejects H1 if H1 and H12 are rejected, each
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at level α. The closed test procedure rejects H2 if H2 and H12 are rejected, each at

level α. For this example, the closure principle requires testing 22−1 = 3 hypotheses,

i.e., H1, H2 and H12, to control the FWER for these two hypotheses at level α.

4.2.2 Bonferroni-based closed test procedures

Again, consider the problem of testing m elementary null hypotheses H1, . . . , Hm.

The Bonferroni-based closed test procedures apply weighted Bonferroni tests to each

intersection hypothesis HJ . For each intersection hypothesis HJ with i ∈ J ⊆ I

assume a collection of weights wj(J) such that 0 ≤ wj(J) ≤ 1 and
∑

j∈J wj(J) ≤ 1.

These weights quantify the relative importance of the hypothesis Hj included in the

intersection hypothesis HJ . Let pj be the unadjusted p-value for Hj. Then the p-value

for the intersection hypothesis HJ by a weighted Bonferroni test is defined as

pJ = min{qj(J) : j ∈ J}

where

qj(J) =


min{1, pj/wj(J)} if wj(J) > 0

1 if wj(J) = 0

An intersection hypothesis HJ is rejected if pJ ≤ α. Once the p-values for the

individual hypothesis Hi, i ∈ I and the intersection hypotheses HJ = ∩j∈JHj, J ⊆ I

are obtained, the closed test procedures can control the FWER for the m hypotheses

at level α in the strong sense.

Hommel et al. (2007) introduced a useful subclass of sequentially rejective Bonferroni-

based closed test procedures, which substantially reduce the number of tests of in-
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tersection hypotheses to m steps instead of testing all 2m− 1 intersection hypotheses

as usually required by the closure principle. They described a simple and sufficient

condition when applying weighted Bonferroni tests for each intersection hypothesis

wj(J) ≤ wj(J
′) for all J ′ ⊆ J ⊆ I and j ∈ J ′ (4.2.1)

This monotonicity condition in weights of testing the intersection hypotheses en-

sures consonance, i.e., if an intersection hypothesis HJ is rejected, there is an indi-

vidual hypothesis Hj that can also be rejected as well. This substantially reduces

the number of intersection hypotheses to be tested in m steps instead of 2m − 1

steps. We refer to such a procedure as a “shortcut” procedure. Many popular mul-

tiple test procedures belong to this subclass, such as the Bonferroni-Holm procedure

(Holm (1979)), fixed sequence test (Westfall and Krishen (2001)), the fallback pro-

cedure (Wiens (2003)), and Bonferroni-based gatekeeping procedures (Dmitrienko et

al. (2003)).

4.2.3 Sequentially rejective graphical procedure

Bretz et al. (2009) proposed an iterative graphical approach to facilitate the visual-

ization and communication of Bonferroni-based closed testing procedures for common

multiple testing problems. Figure 4.1 shows an initial graph for two primary hypothe-

ses and two secondary hypotheses. Each vertex (node) represents one elementary

hypothesis. H1 and H2 represent two primary hypotheses. H3 and H4 represent two

secondary hypotheses. Here we have I = 1, 2, 3, 4, weights w1(I) = w2(I) = 0.5 for
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the primary hypotheses and weights w3(I) = w4(I) = 0 for the secondary hypotheses,

which means that no secondary hypothesis can be rejected before a primary hypoth-

esis is rejected. The local significance level is defined as αi = αwi(I) for i ∈ I. In

addition, vertices Hi and Hj are connected through direct edges, where the associated

weight gij indicates the fraction of the local significance level αi that is propagated

to Hj once Hi has been rejected. In this example, the local significance levels for

two primary hypotheses are α1 = α2 = 0.5α and the local significance levels for two

secondary hypotheses are α3 = α4 = 0. In this example, g12 = g13 = 0.5 which means

that half of the local significance level α1 is propagated to H2 and the other half is

propagated to H3 once H1 is rejected. If a hypothesis Hi is rejected, the local signifi-

cance level for the remaining non-rejected hypotheses and the graph will be updated

based on the prespecified rules, e.g., weights wi(I) and gij. Repeat the test until no

further hypothesis can be rejected. Details regarding to the rules to update the graph

and weights can be found in Bretz et al. (2009) and Bretz et al. (2011).

The advantages of this graphical approach include its ability to visualize multiple

testing strategy and ease communication of findings. The Bonferroni-based test leads

to simple, consonant closed tests and shortcut procedures as long as the monotonicity

condition of (3.2.1) is satisfied. Bretz, Maurer and Hommel (2010) provided SAS code

to perform the Bonferroni-based sequentially rejective multiple test procedure. Bretz

et al. (2011) presented the gMCP package in R, which offers a convenient way to

implement these procedures in the graphical user interface (GUI).
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H1
1
2
α

H2
1
2
α

H3

0

H4

0

g12

1− g12

g21

1− g21

1 1

Figure 4.1: Multiple testing strategy for two primary hypotheses H1, H2 and two
secondary hypotheses H3, H4

4.2.4 Our proposal

Tang and Geller (1999) showed that if there exists a group sequential procedure to

test every intersection hypothesis at level α then application of the closure principle

of Marcus et al. (1976) leads to a group sequential procedure that controls the FWER

at level α in the strong sense. This approach can be applied to any closed testing

procedure, including shortcut procedures, such as the Bonferroni-based closed testing

procedure. Many multiple testing procedures are based on p-values. The Bonferroni-

based closed testing procedure from Bretz et al. (2009) also uses p-values as inputs

to update the graphs and weights of multiple testing in a fixed sample design.

Sequential p-values from Liu and Anderson (2008a) provide valid p-values at the

interim and final analyses as long as the sample space is ordered by a class of well-

ordered group sequential boundaries: (a) The final p-value, pτ , adheres to the ITT
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principle that all available data are analyzed; (b) sample paths reaching the same

boundary have identical p-values; and (c) pτ is always significant if the significance

boundary is crossed at any stage. We have discussed how to use sequential p-values

to completely order the sample space of a group sequential design in Chapter 3. In

general, sequential p-values can be used as inputs to apply in any p-value based

multiple testing procedures in group sequential designs.

A combination of approaches from Tang and Geller (1999), Bretz et al. (2009) and

Liu and Anderson (2008a) together will provide a simple approach for controlling the

FWER in a group sequential setting with multiple testing. A possible drawback of

Tang and Geller (1999) is that one could choose to retest the previously rejected

hypotheses when we want the analysis of the total data to be significant. If the

previous conclusion is revoked then the power is reduced. This is not an issue for

sequential p-values, since the property of sequential p-values guarantees that the final

p-value is no larger than the previous sequential p-values. The sequentially rejective

graphical procedures from Bretz et al. (2009) are always consonant and thus shortcut

procedures of length m are obtained. The graphical approach and available software

make it easier to communicate the study design.

We use the Bonferroni-based sequentially rejective graphical procedure from Bretz

et al. (2009) to illustrate how to use sequential p-values for multiplicity issues in group

sequential designs. We combine the approaches from Tang and Geller (1999), Bretz et

al. (2009) and Liu and Anderson (2008a) together and give the following proposition.
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Since sequential p-values can control the error rate for any hypothesis at levels of

interest, the Bretz et al. (2009) result can be applied to it to control the FWER in a

group sequential trial.

Propersition 5. The following procedure preserves strong control of the Type I error:

Step 1. Conduct interim analyses and calculate sequential p-values for each individual

hypothesis, based on the group sequential boundaries or α spending functions that

produce a well-ordered sample space.

Step 2. Apply the sequentially rejective graphical approach from Bretz et al. (2009)

at each interim analysis, get the last updated weights and graph.

Step 3. If any hypothesis is not rejected, continue the trial to the next stage, in which

the sequentially rejective graphical approach of Bretz et al. (2009) is repeated, with

the previously rejected hypotheses automatically rejected without retesting.

Step 4. Reiterate Step 3 until all hypotheses are rejected or the last stage is reached.

4.3 Results

Simulation studies can be designed to study the power and expected sample size of

multiple testing in group sequential designs using the scenarios from Table 1 in Bretz,

Maurer and Hommel (2010). We consider a simple situation of a trial comparing

one low dose and one high dose with placebo with one interim analysis and two

endpoints (one primary and one secondary endpoint as shown in Figure 4.1). We use

exponential spending functions to generate group sequential bounds for all primary
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and secondary endpoints. O’Brien-Fleming-type spending functions are often used

for the primary endpoints because of the consideration in stopping the trial early only

if the results are so convincing that it could be considered as unethical to continue

the trial. Pocock-type spending functions spend α more aggressively in the interim

analysis than O’Brien-Fleming-type spending functions do, thus have lower bounds

at the interim analysis and are easier to reject at the interim analysis than O’Brien-

Fleming-type spending functions. Since one generally requires rejecting a primary

hypothesis prior to rejecting a secondary endpoints, the less stringent Pocock-type

spending functions might be a choice for secondary endpoints if you do not wish

to continue the trial after the primary hypothesis is resolved. So we use O’Brien-

Fleming-type spending functions for primary endpoints, but we study both O’Brien-

Fleming- and Pocock-type spending functions for the secondary endpoints.

We study the expected sample size under three strategies to stop the trial when

using the efficacy bounds only:

Strategy 1 the trial will stop as soon as at least one efficacy boundary for the primary

endpoint in either dosage arm is crossed;

Strategy 2 the trial will stop as soon as efficacy boundaries for the primary endpoint

in both dosage arms are crossed;

Strategy 3 the trial will stop as soon as efficacy boundaries for the primary and

secondary endpoints in both dosage arms are crossed.

We also study the power and expected sample sizes for scenarios with both efficacy
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and futility bounds:

Strategy 4 the trial will stop as soon as at least one efficacy boundary for the primary

endpoint in either dosage arm is crossed, or futility boundaries for both the primary

endpoints are crossed;

Strategy 5 the trial will stop as soon as efficacy boundaries for the primary endpoint

in both dosage arms are crossed, or futility boundaries for both the primary endpoints

are crossed;

Strategy 6 the trial will stop as soon as efficacy boundaries for the primary and

secondary endpoints in both dosage arms are crossed, or futility boundaries for both

the primary endpoints are crossed.

If at the interim analysis the futility bound for only one primary endpoint is

crossed, and neither the efficacy nor futility bound is crossed for the other primary

endpoint, the trial will continue to the final analysis. In general, group sequential

designs require a larger sample size than a fixed sample design to maintain the same

Type I error rate α and power 1−β (Jennison and Turnbull (2000)). The total sample

size for a group sequential trial is often called the maximum sample size due to the

possibility of stopping at the interim analysis. The ratio of the maximum sample size

of a group sequential design to the sample size of a fixed sample design is termed the

inflation factor of a group sequential design. For a study design with α=0.025, β=0.2

and one interim anlysis, the inflation factor is 1.004 when an O’Brien-Fleming-type

spending function is used for efficacy bound for a one-sided test. The inflation factor
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is 1.107 when a Pocock-type spending function is used for the efficacy bound, which is

larger than that of an O’Brien-Fleming-type spending function. If both efficacy and

futility bounds are used, the inflation factor is even larger than that using efficacy

bounds alone. For example, when a Hwang-Shih-DeCani spending function with

parameter γ = −2 is used for the futility bound, the inflation factor is 1.037 for an

O’Brien-Fleming-type efficacy bound and 1.138 for a Pocock-type efficacy bound.

4.3.1 O’Brien-Fleming-type spending function for both pri-

mary and secondary endpoints

Table 4.1 shows the simulation results when an O’Brien-Fleming-type spending

function is used for both primary and secondary endpoints. Assume H1, H2 are the

primary hypotheses; H3, H4 are the secondary hypotheses. The design parameters

for this simulation study are α1, α2, g12, g21, where α1, α2 are the local significance

levels for the two primary hypotheses. Let g12, g21 indicate the fraction of the local

significance level αi that is propagated to Hj once Hi has been rejected. Let ρ be

the correlation between between the primary and secondary endpoint for each dose.

Let θ1, θ2, θ3, θ4 specify the treatment effect for each endpoint. We study different

realistic scenarios of ρ, θ1, θ2, θ3, θ4 in this simulation study. Power π defines

the probability of having at least one hypothesis is rejected and individual power πi

defines the probability of rejecting each individual hypothesis. SS1, SS2, SS3 are

the expected sample sizes under Strategy 1 - 3, respectively, when using the efficacy
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bounds only. Ful1, Ful2, Ful3 are the expected sample sizes under Strategy 4 - 6,

respectively, when both efficacy and futility bounds are applied.

We compare the power of this multiple testing in a group sequential design with

the results in Table 1 from Bretz, Maurer and Hommel (2010) under the fixed sample

design. We find that our results under a group sequential design are consistent with

the results under the fixed sample design with regard to power. The FWER is kept

below level α = 0.025 under the null for all hypotheses (case 1), i.e., when there are

no treatment effects on both primary and secondary endpoints for either dosage arm.

If both doses are effective for the primary endpoint, the power is 0.90 (cases 7-10).

When only using efficacy boundaries (columns SS1 − SS3), sample size saving

is not obvious under the complete null hypotheses (case 1). Sample size savings

are observed for cases when at least one primary endpoint is under the alternative

hypothesis (cases 2-4), i.e., when the effect on at least one primary endpoint is as

hypothesized. More sample size saving is observed when both primary endpoints are

under the alternative hypotheses (cases 7-10). Significant sample size savings accrue

when the treatment effects for the primary endpoints are larger than the hypothesized

(cases 15-17). There is almost no sample size saving for all scenarios when Strategy

3 is applied (column SS3).
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When futility bounds are used (columns Ful1 − Ful3), sample size savings are

most significant under the complete null hypotheses (case 1) due to the futility stop

at the interim analysis when there are no treatment effects. Similar to the cases when

only using efficacy bounds, the sample size savings are significant when the treatment

effects for primary endpoints are larger than the alternatives (cases 15-17), but the

saving is less than when we use efficacy bounds alone due to the larger maximum

sample size when using futility bounds. When the treatment effect on at least one of

the primary endpoints is at the alternative hypothesis, the sample size saving with

the possibility of stopping for futility is less than the sample size saving with only

efficacy stopping due to the fact that stopping for futility requires crossing of futility

boundaries for both the primary endpoints.

4.3.2 O’Brien-Fleming-type spending function for primary

endpoint and Pocock-type spending function for sec-

ondary endpoint

Table 4.2 shows the simulation results when O’Brien-Fleming-type spending func-

tions are used for primary endpoints and Pocock-type spending functions are used

for secondary endpoints.

The general results are similar to those shown in Table 4.1, but using Pocock-type

spending functions for secondary endpoints results in larger sample sizes, compared

to using O’Brien-Fleming-type spending functions. The inflation in sample size due
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to using a Pocock-type efficacy spending function for secondary endpoints offsets

some of the sample size savings of the group sequential design due to early stopping.

But there are still sample size savings when the null hypotheses are true for both

primary endpoints when using futility bounds (case 1), or when treatment effects for

both primary endpoints are larger than specified by the alternative hypotheses (case

15-17).
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4.4 Discussion

In this paper, we provide a straightforward method for control of Type I error for

multiple hypotheses in a group sequential setting. We propose using the sequential

p-value method of Liu and Anderson (2008a) in the multiple testing context. Sequen-

tial p-values from Liu and Anderson (2008a) provide valid p-values at the interim

and final analyses as long as the sample space is ordered by a class of well-ordered

group sequential boundaries. Tang and Geller (1999) showed that if there exists

a group sequential procedure to test every intersection hypothesis at level α, then

application of the closure principle of Marcus et al. (1976) leads to a group sequen-

tial procedure that controls the FWER at level α in the strong sense. Tang and

Geller’s (1999) proposition can be extended to any closed testing procedures, includ-

ing the Bonferroni-based sequentially rejective graphical procedure from Bretz et al.

(2009). In general, sequential p-values can be used as inputs in any p-value based

multiple testing procedures in group sequential designs. Our proposal combines these

approaches and uses sequential p-values at interim and final analyses for each indi-

vidual hypothesis as inputs for the p-value based closed test procedures for multiple

testing in group sequential designs. Liu and Anderson (2008b) suggested sequential

p-values for multiple testing (e.g., hieratical endpoints, sequential Hochberg test, se-

quential adaptive closed testing procedure). We have extended this here to apply to

p-value based closed test procedures and orderings based on spending functions, the

most common form of designing group sequential trials.
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We study the operating characteristics of multiple hypothesis testing in group

sequential designs, e.g., power and expected sample size. Simulations confirm that

our proposal controls the FWER at level α in the strong sense. Simulations also show

that using a group sequential design in multiple hypothesis testing is more efficient

in terms of expected sample size than fixed sample size designs when treatments

are efficacious, or when there are no treatment effects at all if futility bounds are

applied. We also compare different spending functions for secondary endpoints. We

notice that using Pocock-type spending functions for secondary endpoints results in

larger sample size compared to using O’Brien-Fleming-type spending functions for

secondary endpoints, thus the sample size saving is somewhat diminished when a

Pocock-type spending function is used for secondary endpoints. This is due to the

fact that the spending functions for the primary endpoints in both examples are an

O’Brien-Fleming-type spending function and the strategies to stop the trial require

rejection of at least one primary endpoint. This contrasts to the case of a single

endpoint where often Pocock-type bounds will result in a smaller expected sample

size. We also notice that sample size savings for Strategy 2 and Strategy 3 (or

Strategy 4 and Strategy 5) are much less than that for Strategy 1 (or Strategy

6). This is expected, because it is harder to reject two or more hypotheses than to

reject just one hypothesis. In reality, a trial in which the null hypothesis is rejected

for at least one dose level could represent a success.
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Chapter 5

Conclusion

We have developed solutions to applied problems that may be widely used. We

propose a stepwise adaptive design to lessen the information on treatment effect re-

vealed at interim analysis. For a two stage design, we use a step function for the

second-stage sample size adaptation. The stepwise adaptive design is a pre-specified

design and optimized through minimizing expected sample size among a class of these

designs. For a prior distribution of treatment effect θ ∼ N(δ/2, (δ/2)2), the stepwise

adaptive design has an inverted “U” shape with two choices of second-stage sam-

ple size: the total sample size is close to the fixed design sample size when the test

statistic at interim analysis is close to the futility bound or efficacy bound; the total

sample size increases about 20% compared to the fixed design sample size when the

test statistic at interim analysis is intermediate. The stepwise adaptive design is sim-

plified compared to the fully optimized two-stage adaptive design, which also reveals

one or two exact treatment effects at interim analysis due to its continuous nature.
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Compared to the optimal two-stage group sequential design which has one choice for

second-stage sample size, the stepwise adaptive design is less likely to require the

maximum sample size and the minimum second-stage sample size is much smaller. In

general, the stepwise adaptive design has similar expected sample size, overall power,

and predictive power compared to the fully optimized two-stage adaptive design and

optimal two-stage group sequential design. The shape of the optimal stepwise adap-

tive design changes appropriately under different prior distributions for the parameter

of interest. Compared to the adaptive design based on promising conditional power,

which might require doubling the sample size, the optimized stepwise adaptive de-

sign often has higher power and smaller expected sample size and requires a larger

observed treatment effect at the rejection boundary (the observed treatment effect

for the adaptive design based on promising conditional power might be too small to

be clinical meaningful).

In group sequential designs, the spending function approach has become common

because of its flexibility in accommodating unequally-spaced analyses and allowing

some leeway in moving, adding or deleting interim analyses as long as this is done

without knowledge of treatment effects. Many choices of spending functions also pro-

vide flexibility in choosing a unique shape of efficacy or futility boundaries to satisfy

a particular clinical trial design. However, many popular spending functions can not

completely order the sample space for a group sequential design, though they can

form well-ordered sample spaces. We define “well ordered sample space” and “com-
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pletely ordered sample space”, and give sufficient conditions to define a well ordered

sample space for a spending function. Maurer and Bretz (2013) provides similar

conditions for well ordered sample space, though they call it well ordered families

of spending functions and define that through the nominal significance levels at the

interim analyses rather than the corresponding boundary value. We have proposed a

simple method to transform a spending function to one that can completely order a

group sequential design sample space. We also have shown that exponential spending

function can completely order a sample space and also provide flexibility in different

shape of design boundaries. We show examples in which both the transformed spend-

ing function and exponential spending functions provide completely ordered sample

space. We extend the sequential p-value ordering to test the alternative hypothesis.

The two one-sided sequential p-values against the null or alternative hypothesis may

provide useful information for the Data Monitoring Committee.

Many multiple testing procedures are available for fixed sample designs. Many of

these procedures require p-values of testing single or intersection hypotheses. The se-

quential p-value method provides valid p-values at interim and final analyses. In gen-

eral, sequential p-values can be used as inputs to apply in any p-value based multiple

testing procedures in group sequential designs. We propose combining the sequential

p-value method and p-value based closed test procedures, e.g., sequentially rejective

graphical procedure, to control the familywise error rate for a group sequential design

with multiple testing. Liu and Anderson (2008b) suggested sequential p-values for
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multiple testing issues. We have extended this here to apply to p-value based closed

test procedures and orderings based on spending functions, the most common form

of designing group sequential trials. Our simulation studies showed that this method

controls familywise error rate at a level comparable to that of a fixed sample design,

and using a group sequential design in multiple hypothesis testing is more efficient

than fixed sample size designs in many scenarios.

The findings described suggest promising avenues for future research. An appro-

priate future research pursuit would be to make these and related procedures readily

available for use through software. It is of interest to find a general set of conditions

under which a family of spending functions completely order a sample space. The

sequential p-value method and spending functions, which can completely order the

sample space of a group sequential design, also provide a way to form confidence

intervals. For a group sequential trial with both efficacy and futility boundaries, dif-

ferent spending functions can be chosen for Type I or Type II error spending. It

would be of interest to form asymmetric one-sided confidence intervals for each sam-

ple space orderings by Type I error or Type II error. This asymmetric confidence

interval would provide valuable information for testing both the null and alternative

hypotheses. We have discussed several strategies on stopping for trials with multiple

endpoints. Further guidance on this topic may be of interest.
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